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ABSTRACT 

Physics-Informed Neural Networks (PINN) is a framework capable of simulating physics-based systems with Neural Networks 
(NN). The present work explored the impact of nondimensionalization strategies (NdS) on the simulation of lactic acid production 
by Lactobacillus casei in a bioreactor using PINNs instead of traditional numerical methods. The optimal values of 
nondimensionalization factors for time, reactor volume, and concentrations of biomass, product, and substrate were determined. 
The scaling of nondimensionalized output variables between 0 and 10 produced significantly better results than 
nondimensionalization between 0 and 1, with Mean Absolute Deviation lower than 1.81. NdS were capable of reducing the error 
both on the training and extrapolation regions, improve the obedience to physical constraints and allowed more simple Neural 
Networks to simulate the reactor successfully. 
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1 INTRODUCTION 

NN (Neural Network) is a class of highly flexible algorithms capable of working as universal approximators of any given function 
with inputs and outputs1. They can reproduce extremely complex phenomena. However, they often need a huge amount of data 
(big data) to be trained properly, and that is one of it’s main disadvantages, alongside with possible huge computational costs. 
This can make the use of NNs very complex or expensive in some areas, like bioprocess engineering, since it requires many 
experiments to obtain enough data points that cost both time, technical expertise and material costs.  

PINN (Physics-Informed Neural Networks) is a framework launched in 2018 that supports the optimization of NNs using a small 
amount of data (small data) 2. One of the strongest points of PINNs is that they can be trained using equations and constraints 
based on physical, biological and chemical constraints. Thus, very little data despite the equation system that represents the 
phenomena studied is necessary. NNs produced using the PINN framework are trained using constraints based on the equations 
that model the system studied. They can be trained with virtually no experimental data, and also be used to predict data outside 
of the training range, allowing for extrapolation, prediction and even real-time process simulation. PINNs have been used 
successfully to simulate aerodynamics3, adsorption processes1, and cell diffusion4. While there are many Machine Learning (ML) 
studies applied to bioprocesses and bioreactors 5–8, PINNs are still needing further investigation in the bioprocess engineering 
field. 

Bioprocesses are a challenge for PINNs because they frequently have variables that show multiple dependency. This makes the 
PINN solution to the equation system possibly more complex, requiring more time and technical knowledge to train, which may 
result in the use of PINNs being prohibitive. This work studies nondimensionalization strategies (NdS) applied to solve partial 
differential equations (PDEs) that represent the production of lactic acid by L. casei in a batch bioreactor. Lactic acid production 
was chosen due to abundant scientific literature data and high industrial and economical relevance 9. 

2 MATERIAL & METHODS 

A batch bioreactor for the production of lactic acid (LA) by Lactobacillus casei using lactose as a substrate was simulated using 
PINN with soft constraints on the programming language Python and the library DeepXDE 10. The PINNs were trained on a 
computer with 16gb RAM and AMD Ryzen 5 4600G processor. Obtained PINN models have one input variable, t (time), and four 
output variables: X (biomass concentration), P (lactic acid concentration), S (lactose concentration) and V (reactor liquid volume). 
The error was calculated using Mean Absolute Deviation (MAD) of each output variable, comparing PINN and a reference 
numerical method (finite differences). 

Equations 1 to 3 describe the simulated batch reactor and are are from another study 11. The variables at t=0 were defined as: X= 
1.15 g.L-1, P= 6 g.L-1, S=21.4 g.L-1, V = 5 L. The parameters were obtained from the source 11 and are XM=8 g.L-1, PM=90 g.L-1, 
μmax=0.265 h-1, KS = 0.72 g.L-1, α=3.3, β=0.06 h-1, YPS=0.682, mS=0.03 h-1, f=0.5, h=0.5. The PINN was trained with t between 0 
and 10h, but simulated between 0 and 20h to evaluate extrapolation. 
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The following assumptions were made: 1) the reactor is a closed system, 2) the reactor is perfectly mixed, and this mixing does 
not cause chemical, thermal or physical interference of any kind, 3) temperature, volume, pH and pressure are constant. 

Each variable was nondimensionalized using the Equation 4. N represents dimensional variable, NA is the nondimensional value 
of N and NS the nondimensionalization factor of the given N variable. Additionally, outputs variable were tested using scale factors 
of x10 (NS⋅10) and d10 (NS/10). Table 1 describes the nondimensionalization factor applied to each variable. 

𝑁 = 𝑁 ∗ 𝑁  (4) 

 

Table 1 Nondimensionalization factors. 

Variable Meaning Nondimensionalization factor Value 
t Time tsim (Time of simulation) 20 h 
X Biomass concentration XM (maximum biomass concentration) 8 g . L-1 
P Product concentration PM (maximum product concentration) 90 g . L-1 
S Substrate Concentration So (initial substrate concentration) 21.4 g . L-1 
V Reactor liquid volume Vmax (maximum reactor volume) 5 L 

 

3 RESULTS & DISCUSSION 

Figure 1 shows the values of MAD versus NL (Neurons per layer) and HL (number of hidden layers) for each NdS applied to the 
simulated system. The color bar legend indicates the value of MAD. The common nondimensionalization produce average MAD 
of 12.54, while the dimensional version had a 2.92 MAD. The scaling x10 produced the highest error and the d10 scaling the 
lowest, with respective average MAD of 21.95 and 1.81. It can be concluded that the Nondimensional d10 version not only 
produced lower average MAD, but also allowed the central region of NL and HL to represent appropriately the reactor. This is 
significant because PINNs and NNs training can be time and knowledge consuming, and having a strategy that plainly increases 
the region of feasibility can allow more simple models do be trained, and optimal models to be found faster, easier and with lower 
computational cost. This can allow PINNs to be used more frequently in bioprocess simulation and also in realtime bioprocess 
simulation, which can increase both economical productivity and process security. 

Figure 1 MAD vs NL (neurons per layer) and HL (number of hidden layers). 

 

Figure 2 displays the output variables (X, P, S and V) for a PINN with NL=16, HL=6 without any NdS. PINN, Num (numerical 
method result) and Experimental (experimental data from source 11) are displayed. The training region is of 10 h, only half of the 
simulation time. The model clearly violated physical constraints for the substrate (concentration of substrate is less than 0 after 
12 h) and showed a significant error on volume prediction. 
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Figure 2 Output variables for a dimensional PINN with NL=16, HL=6. 

Figure 3 displays the output variables (X, P, S and V) for a PINN with NL=16, HL=6 and Nondimensionalization d10. The model 
displayed good capabilities of extrapolation, respected physical and biological constraints and reproduced almost perfectly the 
data inside the training region. The only significant deviation was found on biomass concentration, after 15h, and was still relatively 
small. 

Figure 3 Output variables for a PINN with NL=16, HL=6 and Nondimensionalization d10. 

4 CONCLUSION 

NdS and PINNs were capable of simulating the production of lactic acid in a batch reactor. The nondimensionalization of output 
variables followed by scaling between 0 and 10 (d10) produced the best results, with an average MAD of 1.81. NdS were capable 
of improve the results obtained and allowed more simple (lower values of NL and HL) PINNs to produce simulations with lower 
errors in comparison to the dimensional PINNs. 
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