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ABSTRACT 

Bioethanol is a fuel of great economic and environmental importance for Brazil, being the subject of extensive research on its 
bioconversion. In this study, the fermentative kinetic parameters for bioethanol production by Saccharomyces cerevisiae NP 01 
were estimated using sweet sorghum juice as substrate in a batch bioreactor. The mathematical modeling was performed using 
the Markov chain Monte Carlo method with the Metropolis-Hastings algorithm. The estimates fit the experimental data, considering 
a 99% credible interval, showing excellent fit for biomass growth, substrate consumption and for ethanol production, validated 
according to the metric of relative root mean square error, with values below 10%. These results significantly contributed to a 
better understanding of the bioprocess. 
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1 INTRODUCTION 

Bioethanol is currently one of the main biofuels under research due to its wide industrial applicability, especially in the automotive 

and alcoholic beverages sectors1,2. The production of bioethanol is predominantly carried out from sugarcane and corn. However, 

several studies are being conducted to explore other feedstock sources, such as sweet sorghum juice (SSJ), due to the 

advantages offered by sweet sorghum (Sorghum bicolor L. Moench). This crop requires fewer fertilizers for production, has a 

shorter production cycle, and consumes less water3. Like sugarcane and corn, sweet sorghum uses glucose as its main carbon 

source4. It is typically produced through the fermentation of sugars by traditional or genetically modified yeasts, such as 

Saccharomyces cerevisiae. This bioprocess involves the conversion of glucose by yeast, under anaerobic conditions, to form 

ethanol5,6. 

Despite the significant advantages offered by bioethanol production through SSJ, some challenges are encountered, such as low 

sugar yield and ethanol production in comparison to sugarcane4. which make it difficult to expand on an industrial scale. 

Mathematical modeling can minimize these issues by employing the Markov chain Monte Carlo method with the Metropolis-

Hastings algorithm (MCMC-MH), enabling the estimation of unknown kinetic parameters and optimization of the targeted process. 

This probabilistic technique is based on applying prior distributions to obtain estimated parameters from posterior distributions, 

according to Bayes’ theorem. By utilizing this technique, it is possible to predict experimentally unknown values and improve 

yield7,8,9. 

Therefore, this study aims to estimate the kinetic parameters of ethanol production through the conversion of SSJ by 

Saccharomyces cerevisiae NP, as previously described in the literature5, using an adapted mathematical model and applying 

MCMC-MH to investigate the kinetic behavior of the bioprocess in a batch bioreactor. 

2 MATERIAL & METHODS 

Experimental data on the bioconversion process of SSJ into bioethanol in a batch reactor, using Saccharomyces cerevisiae NP 
01, were obtained from the literature5 and were mathematically modeled using adapted differential equations from the literature10 
for cell growth, substrate consumption, and product generation. A mass balance was performed through the interaction of biomass 
(X), substrate (S), and product (P) concentrations, according to the Eqs. (2-4). 
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The microbial growth model disregards cell death and the effects of primary and secondary metabolites were adapted from the 
Luedeking-Piret equation11. Substrate consumption was considered for both cell growth and maintenance, with ethanol being the 
considered product. The specific microbial growth rate (μ) was adapted from the Monod equation12, accounting for inhibitory 
effects of substrate and product concentrations, as described in Eq. (1). The experimental measurements used in this work were 
obtained by SALAKKAM et al. (2023)5. Computational simulation was conducted using Bayesian statistics of the posterior 
probability distribution, Eq. (5). For the MCMC-MH method, a 99% credible interval (CI) was considered9. 
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The relative root mean square error (rRMSE) was chosen for model validation, as described in Eq. (6)13. 
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3 RESULTS & DISCUSSION 

The experimental measurements obtained by SALAKKAM et al. (2023)5 were used to estimate the parameters of the sweet 
sorghum juice conversion process into ethanol. Figure 1 shows ethanol production, biomass growth, and substrate consumption. 
It is observed that the experimental data are within the 99% credible interval, demonstrating a good fit of the mathematical model 
and indicating that the MCMC-MH method was effective in estimating. 

  

 

Figure 1: Comparison of the model prediction (solid lines), experimental data (markers), and credible interval (dashed lines) for biomass, 
ethanol and substrate concentrations. 

For the proposed model, nine parameters and their respective credible intervals were estimated, as presented in Table 1. These 
parameters include the maximum specific growth rate (μmax), biomass inhibitory concentration for cell growth (Xinib), substrate 
inhibitory concentration for cell growth (Sinib), product inhibitory concentration for cell growth (Pinib), substrate saturation constant 
(Ks), growth associated product formation rate (α), non-growth associated product formation rate (β), biomass yield per substrate 
(YXs), and cell maintenance (m). 

Upon analyzing the estimated parameters in Table 1, a significant affinity between the substrate and yeast can be observed, 
evidenced by the low value of Ks close to zero12. Additionally, the process of cell growth, substrate consumption, and ethanol 
production exhibits slow kinetics, as indicated by the low value of μmax. The model also indicates a low value of cell maintenance, 
a characteristic observed in Saccharomyces cerevisiae yeast as reported in the literature5.  

The parameter estimates reveal significant inhibition values for biomass, product, and substrate. The parameter distribution 
suggests a focus on the substrate curve, indicating that the microorganism concentrated substrate consumption for cell growth, 
with minimal utilization for cell maintenance. This is consistent with the experimental values observed in the literature for the yields 
Yxs and m5. 
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Table 1 Kinetic parameters estimated with 99% confidence interval and calculation of the rRMSE 

Parameters Unit value Mean CI 99% 

𝜇𝑚𝑎𝑥 h-1 0.0011 [0.0010; 0.0014] 

𝑋𝑖𝑛𝑖𝑏 g/L 0.140 [0.106; 0.189] 

𝑆𝑖𝑛𝑖𝑏 g/L 24.156 [16.419; 29.97] 

𝑃𝑖𝑛𝑖𝑏 g/L 106.923 [88.253; 126.868] 

𝐾𝑠 g/L 0.0698 [0.054; 0.0814] 

𝛼 g/g 9.190 [7,701; 11.017] 

𝛽 g/g 0.049 [0.0371; 0.062] 

𝑌𝑋𝑠 g/g 0.044 [0.038; 0.050] 

𝑚 h-1 0.0013 [0.0009; 0.0018] 

rRMSE X 
(Biomass concentration) 

rRMSE P 
(Ethanol concentration) 

rRMSE S  
(Substrate concentation) 

9.41% 8.15% 7.55% 

 
In addition to the parameters, Table 1 also presents the rRMSE results, indicating an excellent fit of the model to the biomass 
growth curve, substrate consumption curve and for the ethanol production curve, with rRMSE values below 10%. These results 
confirm the effectiveness of the proposed model in representing and predicting the sweet sorghum juice conversion process into 
ethanol. 

4 CONCLUSION 

In this study, mathematical modeling was conducted to estimate fermentative kinetic parameters for bioethanol production from 
SSJ using Saccharomyces cerevisiae NP 01 in a batch bioreactor. The proposed model underwent investigation through the 
application of the MCMC-MH method, with experimental measurements within the 99% credible interval. The obtained estimates 
of the kinetic parameters align with the evaluated process, showcasing the model's effectiveness in representing the bioprocess. 
Data and modeling indicate that SSJ is a promising feedstock for bioethanol production, owing to its significant substrate-yeast 
affinity despite exhibiting slow kinetics. Furthermore, the rRMSE results were deemed excellent (< 10%), further supporting the 
accuracy of the mathematical model and the analyzed kinetic parameters in simulating the bioprocess. 
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