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ABSTRACT 

The volumetric mass transfer coefficient (𝑘𝐿𝑎) governs oxygen transfer from gas to liquid, influencing bioprocess productivity and 
stability. This study explores optimizing dissolved oxygen (DO) control in stirred-tank bioreactors by adjusting airflow rate (𝑄𝐺) and 

agitation speed (𝑁), which are critical for biological cultures' optimal growth and metabolism. By employing experimental data from 
key control points, spline interpolation provides a precise modeling approach to determining optimal control parameters. The 
gradient ascent method is utilized to identify the maximum oxygen transfer rate, integral for precise DO management in the reactor. 
Although spline interpolation is non-global, it effectively delineates the control landscape, facilitating accurate numerical derivative 
approximations and the formulation of an optimal control path. Additionally, the study incorporates a Proportional-Integral-
Derivative (PID) controller, which dynamically adjusts aeration and rotation based on real-time feedback, maintaining oxygen 
supply in equilibrium with biological demand. This methodology ensures that bioreactor operations are finely tuned to sustain 
desired 𝑘𝐿𝑎 levels, enhancing overall efficiency and productivity. 
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1 INTRODUCTION 

The volumetric mass transfer coefficient (𝑘𝐿𝑎) is a crucial parameter in the operation of bioreactors, playing a pivotal role in the 

management of dissolved oxygen levels, which are vital for the optimal growth and metabolism of biological cultures1. The 𝑘𝐿𝑎, 
defined by the Equation 1, sets the oxygen transfer rate (OTR) from the gas to the liquid phase, making its precise control 
fundamental in biotechnological applications, where 𝑘𝐿  represents the mass transfer coefficient, a denotes the interfacial area, 𝐶 

is the oxygen concentration at a specific time 𝑡, and 𝐶∗ is the equilibrium oxygen concentration. 

OTR = 𝑑𝐶 𝑑𝑡⁄ = 𝑘𝐿𝑎(𝐶
∗ − 𝐶) (1) 

However, maintaining optimal 𝑘𝐿𝑎 and dissolved oxygen levels presents significant challenges, particularly in the context of 
bioreactor design and operation. In aerobic cultivations, the level of dissolved oxygen (OD) is typically regulated to meet specific 
metabolic requirements by setting it as a fixed target. A cascade control system is often employed to adjust the bioreactor’s 
agitation (rotation) and aeration rates in response to variations in oxygen uptake rate (OUR). These challenges are compounded 
in various bioreactor configurations, where the control strategies may include cascading control mechanisms - beginning with 
agitation followed by aeration adjustments. This lack of coordination may result in excessive shear stress and energy inefficiencies, 
ultimately impairing growth and productivity due to the system’s adverse reactions to non-ideal control conditions. The objective 
of this study is to delineate a path of optimal control by selecting the best combinations of rotation speed (𝑁) and aeration rate 

(𝑄𝐺) that maximize the control response to 𝑘𝐿𝑎. This involves understanding and predicting how changes in these variables 

influence 𝑘𝐿𝑎, thereby facilitating enhanced control strategies. 

2 MATERIAL & METHODS 

The 𝑘𝐿𝑎 was determined using the static gassing-out method1 under controlled conditions. Measurements were conducted at 
25°C for distilled water with a viscosity of 0.87 mPa.s and for a 30% glycerol (v/v) solution with a viscosity of 3.23 mPa.s. These 
experiments were carried out in a 1-liter bioreactor equipped with two 3 cm diameter Rushton impellers spaced 3 cm apart. Below 
the lower impeller, a sparger with 2 µm pore diameter was installed. Dissolved oxygen (DO) concentration and temperature were 
monitored using Oxymax COS22D probe (Endress Hauser, Switzerland). Air and nitrogen flows were precisely measured and 
regulated using FMA-A2407 mass flow meters (Omega Engineering, USA). 

In this study, cubic spline interpolation was used to model the relationship between control variables and 𝑘𝐿𝑎 within the data's 
convex hull, ensuring interpolations remained within feasible boundaries. To achieve this, the Clough-Tocher scheme was 
employed by using the scipy package2 in Python, ensuring smooth transitions without abrupt changes in curvature. 

3 RESULTS & DISCUSSION 

Managing dissolved oxygen (DO) in stirred-tank bioreactors begins by defining the control range for airflow rate (𝑄𝐺) and agitation 

speed (𝑁). Within this framework, this study outlines a five-step methodology to optimize DO control in the bioreactor: 𝑘𝐿𝑎 data 
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acquisition, 𝑘𝐿𝑎 data interpolation, establishment of a gradient ascent path, formulation of the control law and estimation of optimal 

combinations of control parameters 𝑄𝐺 and 𝑁.  

The 𝑘𝐿𝑎 data were determined at critical points within the extremes of the control range and at a central point (corresponding to 

200, 500 and 800 rpm and 0.3, 0.75 and 1.2 vvm). Given the physical expectation that 𝑘𝐿𝑎 should increase with enhancements 

in both 𝑄𝐺 and 𝑁, it was imperative to accurately estimate the surface topology defined by these data points. Unlike polynomial or 
other analytic regression techniques, spline interpolation does not yield a single formula encompassing the entire domain. Instead, 
it employs piecewise cubic polynomials, with each segment between data points being independently defined. Consequently, 
while this method excels in interpolation within the known data range, extrapolating beyond this range can produce unreliable 
outcomes. However, since the 𝑘𝐿𝑎 experimental data points strictly correspond to the operational control range, extrapolation is 
not a concern in our analysis. 

Upon constructing the interpolated grid from the 𝑘𝐿𝑎 data points, it becomes possible to delineate the optimal control path that 

should be followed to maximize the response over 𝑘𝐿𝑎. This optimization is facilitated through the application of the gradient 

ascent method, a numerical technique designed to locate the maximum of a function. In this context, the function 𝑓 represents 

the interpolated 𝑘𝐿𝑎 values over a grid defined by 𝑄𝐺 and 𝑁, as delineated in Equation 2. The gradient of the function 𝑓, denoted 

as ∇𝑓, is a vector composed of partial derivatives. It indicates the direction of the steepest ascent in the function’s value. 
Mathematically, this vector is expressed as shown in Equation 3. 

𝑓(𝑄𝐺 , 𝑁) = 𝑘𝐿𝑎 (2) 

𝛻𝑓(𝑄𝐺 , 𝑁) = (
𝜕𝑓

𝜕𝑄𝐺
,
𝜕𝑓

𝜕𝑁
) (3) 

In practical applications, especially when using piecewise spline interpolation, despite the smoothness and continuity, there is not 
a single global analytical expression for 𝑓. Consequently, derivatives of 𝑓 must often be approximated numerically rather than 

derived from a unified analytical formula. As 𝑓 can be represented on a discrete grid, finite differences might be used, as delineated 

by Equation 4 and 5, where ℎ is a small step in the respective variable. 

𝜕𝑓

𝜕𝑄𝐺
≈ 𝑓(𝑄𝐺 + ℎ𝑄𝐺 , 𝑁) − 𝑓(𝑄𝐺 − ℎ𝑄𝐺 , 𝑁) (2ℎ𝑄𝐺)⁄  (4) 

𝜕𝑓

𝜕𝑁
≈ 𝑓(QG, 𝑁 + ℎ𝑁) − 𝑓(QG, 𝑁 − ℎ𝑁) (2ℎ𝑁)⁄  (5) 

Starting from an initial point (𝑄𝐺0, 𝑁0) – minimal control point – the function is maximized by iteratively updating the values of 𝑄𝐺 

and 𝑁 using Equation 6 and 7 for each component, where 𝛼 is the learning rate or step size, which controls the magnitude of 
parameter adjustments in each iteration. This step size was carefully tuned to ensure convergence without overshooting by 
choosing between two calculated values (a dynamically scaled step size and a minimum step size, 𝛼0 = 0.01𝛼), given by the 
Equation 8, where the dynamically scaled step size is calculated by multiplying the Euclidean norm of the gradient by a scaling 
factor defined as 𝛼∗ = 0.2𝛼. This ensures that each update step is proportional to the current gradient's strength, allowing faster 
convergence in steep areas and careful stepping in flat regions. The iteration continues until a stopping criterion is met, typically 
set when the gradient ∇𝑓 becomes very small, indicating a local maximum or plateau has been reached. Consequently, the path 

traced by (𝑄𝐺𝑛, 𝑁𝑛) over iterations effectively forms the ascent path in the function’s landscape.  

𝑄𝐺𝑛+1 = 𝑄𝐺𝑛 + 𝛼 ⋅
𝜕𝑓

𝜕𝑄𝐺
|
(𝑄𝐺𝑛,𝑁𝑛)

 (6) 

𝑁𝑛+1 = 𝑁𝑛 + 𝛼 ⋅
𝜕𝑓

𝜕𝑁
|
(QG𝑛,𝑁𝑛)

 (7) 

𝛼 = 𝑚𝑎𝑥
𝑛

(𝛼∗ ⋅ ‖𝛻𝑓(𝑄𝐺𝑛, 𝑁𝑛)‖, 𝛼0) (8) 

By dynamically adjusting the 𝑓(𝑄𝐺 , 𝑁) in response to changes in OUR, the control system leverages the established path to ensure 
that OD levels are maintained within optimal bounds for the bioprocess. Adjustments are made based on real-time feedback to 
modify the oxygen transfer rate (OTR), thereby increasing, decreasing, or stabilizing the dissolved oxygen (OD). To maintain OD 
at a constant level, it is crucial to align OTR with OUR, ensuring equilibrium between oxygen supply and demand. This balance is 

achieved using a Proportional-Integral-Derivative (PID) controller, which adjusts 𝑘𝐿𝑎 (and indirectly 𝑄𝐺 and 𝑁) based on deviations 

of the actual oxygen concentration 𝐶 from a predefined target 𝐶𝑡𝑎𝑟𝑔𝑒𝑡. The PID control law is defined in Equation 8, while the 

control error at time 𝑡, 𝑒(𝑡), is described in Equation 9, where 𝐾𝑃, 𝐾𝐼, and 𝐾𝐷 are the proportional, integral, and derivative gains, 
respectively. 
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∆𝑘𝐿𝑎 = ∆𝑓 = 𝐾𝑃𝑒(𝑡) + 𝐾𝐼∫𝑒(𝑡)𝑑𝑡 + 𝐾𝐷
𝑑

𝑑𝑡
𝑒(𝑡) (8) 

𝑒(𝑡) = 𝐶𝑡𝑎𝑟𝑔𝑒𝑡 − 𝐶(𝑡) (9) 

The output of the control law determines the 𝑘𝐿𝑎𝑡𝑎𝑟𝑔𝑒𝑡, which guides the selection of 𝑄𝐺 and 𝑁 settings along the optimal path. To 

minimize computational demands, a simple linear interpolation is utilized, allowing for fewer data points without sacrificing 
precision. This interpolation method is applied when the  𝑘𝐿𝑎𝑡𝑎𝑟𝑔𝑒𝑡 lies between two consecutive path points, 𝑘𝐿𝑎𝑛 and 𝑘𝐿𝑎𝑛+1. 

The corresponding 𝑄𝐺 and 𝑁 values are then calculated using the Equations 10 and 11. 

𝑄𝐺𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑄𝑛 +
(𝑄𝐺𝑛+1 − 𝑄𝐺𝑛)

(𝑘𝐿𝑎𝑛+1 − 𝑘𝐿𝑎𝑛)
⋅ (𝑘𝐿𝑎𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑘𝐿𝑎𝑛) (10) 

𝑁𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑁𝑛 +
(𝑁𝑛+1 − 𝑁𝑛)

(𝑘𝐿𝑎𝑛+1 − 𝑘𝐿𝑎𝑛)
⋅ (𝑘𝐿𝑎𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑘𝐿𝑎𝑛) (11) 

The interpolated values, 𝑄𝐺𝑡𝑎𝑟𝑔𝑒𝑡 and 𝑁𝑡𝑎𝑟𝑔𝑒𝑡, are subsequently used to adjust the control parameters for the actuators – 

specifically, the flow meter and motor. This alignment ensures that the bioreactor operations are finely tuned to meet the desired 
𝑘𝐿𝑎𝑡𝑎𝑟𝑔𝑒𝑡, while also minimizing the computational load by reducing the necessity to store and process a large number of data 

points. The Figure 1 presents the interpolated grid and ascend control path generated for distilled water and 30% v/v glycerol 
solution. 

 

Figure 1 . Spline-interpolated response surface for 𝑘𝐿𝑎 based on variations in 𝑄𝐺 and 𝑁 for (a) distilled water and (b) 30% v/v glycerol solution. 
White dots indicate experimental data points, while black arrows show the gradient direction. Black dots denote discrete path points derived 
through the gradient ascent method, and the black line represents the interpolated path used to select the target values 𝑄𝐺𝑡𝑎𝑟𝑔𝑒𝑡

 and 𝑁𝑡𝑎𝑟𝑔𝑒𝑡 . 

4 CONCLUSION 

This study has successfully developed a control methodology utilizing interpolation techniques to regulate oxygen levels within a 
precise range. From experimental 𝑘𝐿𝑎 data collected at both the centroid and extremities of control settings, this approach 
dynamically corrects deviations from targeted oxygen concentrations through tailored adjustments in airflow rate and agitation 
speed. These modifications enhance the control authority over 𝑘𝐿𝑎 variations defined by the PID controller, allowing for the optimal 
selection of control paths under varying operational conditions. Consequently, this strategy not only enables an ideal environment 
for microbial growth and productivity but also improves energy efficiency, thereby rendering the bioprocess more sustainable and 
cost-effective. 
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