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ABSTRACT 

The work demonstrates concern regarding the excretion of pharmaceutical products after consumption, highlighting the challenges 
for their efficient removal, especially in aquatic environments. Given the inefficacy of traditional treatment methods, there is a 
growing interest in adsorption techniques for removing these compounds. Modeling multicomponent adsorption isotherms has 
become crucial for creating effective water treatment systems, using a model based on the Langmuir isotherm. The study proposes 
to analyze a system involving four pharmaceutical elements and using sugarcane bagasse as the adsorbent. The technique called 
Markov Chain Monte Carlo Method was applied to determine the adsorption parameters, where excellent agreement was 
observed between the profiles of simulated and experimental isotherms. 
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1 INTRODUCTION 

Pharmaceutical products, integral for human and animal health, raise concerns upon excretion due to potential unknown effects 

on humans and aquatic life1,2. Compounds like anti-inflammatories and antibiotics, naturally found in various sources including 

hospital effluents, pose challenges for efficient removal, prompting interest in techniques such as adsorption for their promising 

effectiveness33,4,5,6. Multicomponent adsorption isotherm modeling, particularly based on the Langmuir model7, has become 

crucial for designing effective water treatment systems, describing how different substances adsorb onto materials without 

interfering with each other in the same binding space. 

This study focuses on analyzing a previously conducted investigation of competitive drug adsorption from multicomponent 

mixtures using sugarcane bagasse as the adsorbent8. The system involves four elements: ciprofloxacin (CPX), sulfamethoxazole 

(SMX), ibuprofen (IBU), and diclofenac (DCF), each characterized by four specific parameters. Employing the Monte Carlo via 

Markov Chain Method, specifically the Metropolis-Hastings algorithm, facilitates efficient and precise estimation of these 

parameters, aiding in understanding the complex dynamics of adsorption in such systems. 

2 MATERIAL & METHODS 

Extended Langmuir Model. 

A model was developed for systems dealing with multiple components, using the Langmuir isotherm as a basis7. This model is 

represented by equation (1). 

𝑄𝑒,𝑖 =
𝑄𝑚á𝑥,𝑖𝐾𝑖𝐶𝑒,𝑖

1 + ∑ 𝐾𝑗𝐶𝑒,𝑗
𝑛
𝑗=1

 

This model employs the Langmuir isotherm to explain the amount of adsorbed substance (𝑄𝑒𝑞,𝑖(𝑚𝑔 𝑔⁄ ))  per unit mass of 

adsorbent at a given equilibrium concentration (𝐶𝑒𝑞,𝑖(𝑚𝑔 𝐿⁄ )). The parameters 𝐾𝑖 and 𝑄𝑚𝑎𝑥,𝑖 are obtained from the Langmuir 

isotherm for single-component systems and are suitable when individual adsorption data fit well to this isotherm9. However, when 
the components have molecules of vastly different sizes, the maximum adsorption capacity for one component does not resemble 
the maximum adsorption capacity for another component, resulting in a poor fit to the extended Langmuir model. In this model, 
no interaction between the adsorbates after adsorption is considered, and it is presumed that the surface is homogeneous, with 
a uniform distribution of adsorption sites for the adsorbates10,11. 

Markov Chain Monte Carlo. 

Data collection of the posterior distribution using Markov Chain Monte Carlo (MCMC) methods is the most widely applied approach 
for computing estimates within a Bayesian context. The most common MCMC method is the Metropolis-Hastings algorithm12,13,14. 
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To implement this algorithm, a proposal distribution 𝑟(𝜃∗, 𝜃(𝑡−1))  is first chosen, which is used to generate a new candidate state, 

𝜃∗, based on the current state of the Markov chain, 𝜃𝑡. After selecting the proposal distribution, the Metropolis-Hastings algorithm 

is executed by repeating the following steps: 

1. Sample a candidate point 𝜃∗ from the proposed distribution 𝑟(𝜃∗, 𝜃(𝑡−1))  . 

2. Calculate the acceptance ratio 

AF = min [1,
𝜋(𝜃∗|𝑌)𝑟(𝜃(𝑡−1), 𝜃∗)

𝜋(𝜃(𝑡−1)|𝑌)𝑟(𝜃∗, 𝜃(𝑡−1))
] 

3. Generate a random value U that is uniformly distributed in (0,1). 

4. If U ≤ AF, set 𝜃𝑡 = 𝜃∗. Otherwise, set 𝜃𝑡 = 𝜃(𝑡−1). 

5. Record the current state. 

6. Return to step 1 and repeat until the required posterior samples are obtaine. 

Thus, a series of numbers is produced to represent the posterior distribution, and understanding this distribution is derived from 

the analysis of the values contained in these generated numbers {𝜃(1), 𝜃(2), … , 𝜃(𝑛)}. However, it is important to note that individual 

values 𝜃(𝑖) should be disregarded until the data chain has reached a stable equilibrium state, known as the burn-in period. In the 

context of this study, the approach adopted for generating new values was modeled as a random walk process: 

𝜃∗ = 𝜃(𝑡−1) + 𝑤𝜃(𝑡−1)𝜀 

Where ε represents a vector of random numbers following a standard normal distribution, that is, each element of ε is randomly 
selected according to a normal distribution with mean zero and standard deviation equal to one (𝜀 ~ 𝑁(0, 1)). 

3 RESULTS & DISCUSSION 

In this study, estimates of eight parameters will be analyzed: 𝑄𝑚𝑎𝑥,𝑆𝑀𝑋, 𝑄𝑚𝑎𝑥,𝐶𝑃𝑋, 𝑄𝑚𝑎𝑥,𝐷𝐹𝐶, 𝑄𝑚𝑎𝑥,𝐼𝐵𝑈, 𝐾𝑆𝑀𝑋, 𝐾𝐶𝑃𝑋, 𝐾𝐷𝐹𝐶 and 𝐾𝐼𝐵𝑈. 

Table 1 will display the reference values8 along with the statistical metrics of the estimates performed. 

Table 1 Reference values and parameter estimates. 

Parameter Unit Reference Value8 Initial Estimation Mean C. I. 95% 

𝑄𝑚𝑎𝑥,𝑆𝑀𝑋 mg/g 1,43 2,86 4,22 (4,06; 4,28) 

𝑄𝑚𝑎𝑥,𝑃𝐶𝑋 mg/g 2,61 5,22 2,83 (2,02; 4,16) 

𝑄𝑚𝑎𝑥,𝐷𝐹𝐶 mg/g 1,81 3,62 3,81 (2,32; 5,31) 

𝑄𝑚𝑎𝑥,𝐼𝐵𝑈 mg/g 1,62 3,24 2,74 (2,38; 3,30) 

𝐾𝑆𝑀𝑋 Dimensionless 0,05 0,10 0,15 (0,14; 0,15) 

𝐾𝐶𝑃𝑋 Dimensionless 0,22 0,44 0,45 (0,29; 0,58) 

𝐾𝐷𝐹𝐶 Dimensionless 0,24 0,48 0,29 (0,19; 0,45) 

𝐾𝐼𝐵𝑈 Dimensionless 0,12 0,24 0,31 (0,23; 0,36) 

 

And finally, Figure 1 (a-d) shows a comparison between the experimentally measured values and those estimated of the 

relationship between the amount of substance adsorbed per unit mass of adsorbent (𝑄𝑒) and the concentration of this substance 

at equilibrium (𝐶𝑒). The low affinity of SMX with the adsorbate and the difficulty in removing SMX from a multicomponent solution 

are observed. 

Figure 1 Comparison between experimental and estimated measurements. 
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(a) Sulfamethoxazole. (b) Ciprofloxacin. 
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4 CONCLUSION 

The Monte Carlo via Markov Chain method has proven to be quite robust in obtaining estimates of the parameters of the extended 

Langmuir isotherm model, as evidenced by the comparison of parameter estimates with reference values. Additionally, excellent 

agreement was observed between the profiles of simulated and experimental isotherms. With the exception of the SMX 

component, which showed low affinity with the adsorbate, as evidenced by the 𝐾𝑆𝑀𝑋 constant, both by the reference value8 and 

the estimated value. 
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(c) Diclofenac.  (d) Ibuprofen. 


